sexta-feira, 8 de janeiro de 2010

Alarde criacionista quanto a suposta pegada de tetrápode







Um artigo publicado pela agência FAPESP nesta semana chamou-me a atenção, bem como se tornou motivo para criacionistas alardearem a “crise do darwinismo”.

Este artigo se trata de uma pegada encontrada na Polônia que supostamente pertenceu a um vertebrado com 395 milhões de anos de idade, pertencente ao Período Devoniano Médio (compreendida entre 397 milhões e 500 mil e 385 milhões e 300 mil anos atrás, aproximadamente).

O período devoniano caracterizou-se pela diversificação da fauna e da flora. Entre os invertebrados marinhos, os braquiópodes bivalves se multiplicaram. Os moluscos evoluíram e surgiram certos cefalópodes hoje extintos. Tornaram-se abundantes os corais e similares, enquanto muitos tipos de peixes primitivos apareceram e proliferaram na água doce e salgada.

Um breve resumo da historia dos tetrapodes segue abaixo:

Os primeiros
tetrapodes evoluíram dos peixes de nadadeiras lobadas (sarcopiterígeos) e apareceram em águas costeiras, durante o período do médio devoniano.

Durante o devoniano inferior, (416 - 397 Ma), os sarcopiterígios dividiram-se em duas linhagens principais:

Os
celacantos; esta jamais deixou os oceanos e seus melhores dias se deram no devoniano tardio e no Carbonífero, de 385 a 299 Ma. Ainda hoje os celacantos vivem no oceano.

Os
rhipidistianos; cujos ancestrais viviam provavelmente, próximos a rios e estuários deixaram o oceano e migraram para ambientes de água doce.

Estes se dividiram em dois grupos:

Os
peixes pulmonados, os quais evoluíram proto-pulmões e proto-membros durante o médio devoniano (397 - 385 Ma), como viver fora do ambiente aquático valendo-se de seus proto-membros para andar na terra caso seu local aquático estivesse vazio, bem como eram capazes de respirar oxigênio do ar.

Os
tetrapodomorfos, que possuíam semelhante anatomia à dos peixes pulmonados não surgiram por ter abandonado o ambiente aquático durante os a época de 385 - 359 Ma do devoniano superior que é quando progressivamente se tornaram os tetrapodes (vertebrados de quatro patas).

No final do devoniano, grande número de invertebrados marinhos desapareceram sem que se conheça o motivo. As hipóteses mais prováveis apontam para o aprofundamento das plataformas marinhas e para a deficiência de oxigênio decorrente das sucessivas transgressões e regressões das águas oceânicas. A vegetação, modesta no início do período, desenvolveu-se gradativamente e apareceram, no devoniano médio, as primeiras florestas. A flora do período é, no entanto, relativamente pobre em comparação com a do carbonífero.



Aqui segue o artigo publicado pela agência FAPESP:

Agência FAPESP – Uma descoberta feita na Polônia acaba de virar de cabeça para baixo a história evolutiva dos vertebrados terrestres de quatro membros, ou tetrápodes.

Um grupo de cientistas concluiu que pegadas encontradas em uma montanha no sudeste do país têm cerca de 395 milhões de anos, ou seja, foram feitas 18 milhões de anos antes do que se estimava ter sido a origem dos tetrápodes. A descoberta foi publicada na edição desta quinta-feira (7/1) da revista Nature.

Per Ahlberg, da Universidade de Uppsala, na Suécia, e colegas da Universidade de Varsóvia descrevem no artigo rastros de tamanhos e características variadas, bem como um número de registros isolados de até 26 centímetros de largura, o que indica que os animais teriam cerca de 2,5 metros de comprimento.

Os rastros do Devoniano Médio têm marcas distintas de membros superiores e inferiores e não trazem evidência de marcas do corpo. Ou seja, o animal era quadrúpede e não rastejava.

Os cientistas estimam que os tetrápodes tenham evoluído dos peixes por meio de um estágio intermediário, conhecido como elpistostege, cujos representantes tinham cabeça e corpo de quadrúpede, mas com características de peixes, como nadadeiras no lugar das patas.


As marcas fossilizadas encontradas na Polônia têm pelo menos 10 milhões de anos a mais do que os mais antigos fósseis de elpistostege até hoje descobertos.

De acordo com os autores do novo estudo, a descoberta sugere que os exemplares de elpistostege encontrados não eram as formas de transição entre peixes e tetrápodes como se imaginava. Segundo eles, isso mostra o pouco que ainda se sabe sobre a história primordial dos vertebrados terrestres.

O artigo Tetrapod trackways from the early Middle Devonian period of Poland (Vol 4637 January 2010 doi:10.1038/nature08623), de Per Ahlberg e outros, pode ser lido por assinantes da Nature em
www.nature.com.

Embora seja um artigo elucidativo, não está completo(nada melhor do que ir a fonte...)

E agora, eis a reportagem por inteiro (extraída daqui e daqui):

Ancient Tracks Question Ideas About Tetrapod Origins

Category:
EvolutionHistory of SciencePaleontologyPosted on: January 6, 2010 5:10 PM, by Brian Switek

Tiktaalik is practically a household name. Since its description in 2006 the flat-headed "fishapod" has appeared
in books, on t-shirts, and has even starred in its own music video. Hailed as a "missing link", Tiktaalik has become a poster child fossil for evolution, but it is hardly the first such creature to be given this honor.

Way back in the 1840's, well over a decade before Charles Darwin's On the Origin of Species was published, the Victorian anatomist
Richard Owen was mulling over the concept of transitional forms. He was not so much thinking about actual fossils as the way anatomical frameworks could be modified by natural laws, but even so the anatomy of several creatures Owen had examined appeared to throw credence to the idea that one form could be derived from another. The lungfish Lepidosiren and Protopterus, for example, were fish that had lungs and wispy fins supported by stacks of bone. These traits made the fish seem very similar to some amphibians, and a fossil creature approached the "fish/amphibian boundary" from the other side.

The extinct, crocodile-like amphibian Archegosaurus showed some close resemblances to Lepidosiren, and together Owen took the two forms to represent a divergent juncture in vertebrate forms. The anatomy of Lepidosiren, on the one hand, appeared capable of forming the basis for salamanders with gills such as the
axolotl, while the Archegosaurus, on the other, could have been derived from a gar-like fish. Together they were "transitional types" that seemed to represent gradations along anatomical chains, but, frustratingly, Owen was vague about just what he meant by all this.

It was Darwin's 1859 work, of course, that spurred a greater scientific interest in evolution, but he did not co-opt Lepidosiren and Archegosaurus as transitional forms. Perhaps this was a wise move. Clearly the first land-dwelling vertebrates (called "tetrapods" for their possession of four limbs) could not have evolved from a living fish, and as Archegosaurus became better understood it was moved further and further away from the origin of the first land-dwelling vertebrates. (Today we know
Archegosaurus as a temnospondyl that lived tens of millions of years after the first tetrapods.)

With so few fossils mapping out the transition debates went on for decades about the details of how vertebrates became adapted to life on land. This was not helped by some delays in the description of important specimens. Many fossils of early tetrapods, such as Acanthostega and Ichthyostega, had been found in the over 365 million year old rock of Greenland during the early part of the 20th century. Unfortunately, however, the description of these fossils was held up due to the death of one scientist, the almost glacial work pace of another, and the relegation of some specimens to museum basements where they gathered dust for years.

By 1990, though, our picture of tetrapod origins seemed a little more complete. The earliest tetrapods had evolved from "bony-finned" fish akin to Eusthenopteron (
a long-time representative of the fish side of the transition) and had evolved through graded states into forms such as Acanthostega and Ichthyostega. Yet there was still a wide anatomical gap between the "fish side" and the "tetrapod side" of the transition, a gap that Tiktaalik and its lesser-known relative Panderichthys would come to fit in.

Nor were these the only fossils relevant to questions about this transition. They became the most famous because they are the most complete, but there are plenty of
other critters known from fragments that illustrate that the origin of tetrapods was not some straight-line march as is commonly seen in cartoons. What this all means is that even though Tiktaalik is a celebrity today there is still a lot out there to be discovered, and in a few years we very well may be celebrating some other tetrapodomorph with an anatomy that fits snugly between Tiktaalik and Acanthostega.

Indeed, since the 1980's scientific investigations into the origin of tetrapods has exploded, and new discoveries are being made all the time. One new finding, just published in
Nature, may even cause us to revise what we thought we knew about the tempo and mode of tetrapod evolution. It is a collection of approximately 395 million year old tracks from Poland, tracks that predate Tiktaalik and its kind by several million years.

As described by Grzegorz Niedzwiedzki, Piotr Szrek, Katarzyna Narkiewicz, Marek Narkiewicz, and Per Ahlberg, the tracks were found in quarry in Poland. Rather than representing a shallow freshwater swamp or stream, however, these deposits were marine. This is significant as the evolution of the first tetrapods has generally been thought that have occurred in brackish-to-freshwater environments. Instead the tracks appear to have been made in an area alternately covered and exposed by saltwater, such as a lagoon or shallow tidal area. Whatever the environment was like, though, the creatures walked all over it. While devoid of body fossils (as is often, and frustratingly the case with such sites) the deposit contains numerous tracks made by the animals.

A short trackway representing the steps of what may have been an early tetrapod. To the left is a photo of the trackway, in the middle is an illustration of the track pattern, and to the right are restorations of two tetrapods. The one on the left is based on Ichthyostega and the one on the right represents Tiktaalik. (From Niedzwiedzki et al, 2010)

Among the most impressive of the specimens is a short trackway left by one of the animals. It preserves the hand and footprints of an animal moving in a straight line, and there are no body drag marks. Think about that for a second. Tiktaalik, which lived about 10 million years or so after the tracks were made, had short, stubby arms and even less-well-developed legs that would not have allowed it to do this. No doubt that it could have raised its body to move, but it could not have moved it all the way off the bottom and hence would have left a drag mark between the footprints. The creatures described by Niedzwiedzki and colleagues, however, appear to have raised their bodies higher off the bottom, although they may have also floated their bodies in the water and moving themselves about with their limbs (thus removing some of the weight-bearing stress from their arms and legs).

What is especially interesting, though, is that this trackway appears to show that this animal, which was larger than Ichthyostega, moved in a side-to-side manner similar to that of living salamanders. This might not have been possible for some of the earliest tetrapods known from complete skeletons such as Ichthyostega. In fact, just a few years ago Ahlberg and colleagues published a reexamination of Ichthyostega in
Nature in which they proposed that its overlapping ribs would have hindered its ability to move its body from side-to-side. Instead the restrictions of its skeleton made it seem more likely that it would have moved in a way similar to a seal or an inchworm by flexing its body up-and-down. Clearly the animals whose tracks were preserved in the quarry in Poland were moving more like living amphibians, making them unlike Tiktaalik and (presumably) Ichthyostega.

Some of the individual tracks are also of great interest. If the scientists are correct, they represent the earliest animals yet known with differentiated toes. Toes are a key tetrapod trait, Tiktaalik did not have them, and one of the best-preserved representations of a foot with toes is specimen Muz. PGI 1728.II.1. Altogether it seems to be an impression of almost the entire lower left hindlimb exhibiting at least five toes (there may be more, though, given the track is smudged). It looks akin to what you would expect the foot of something like Ichthyostega to make, but it is not an exact match.

But are those really toes? It looks like the outlines of toes, but could the same impressions have been made by a modified fin? How can we tell whether or not those notches really represent the ends of fingers or something else entirely? As it stands now, we can't. The tracks appear to be consistent with what an early tetrapod could make but the trouble with tracks is that the animals that much such prints almost never die in their tracks. We need bones to be sure, and in lieu of bones we need to try to reconstruct how those kind of tracks could have been made.

These tracks very well might be the earliest traces of tetrapods on record, but that is a hypothesis, not a fact. The fact is that some marine vertebrate with limb-like appendages made these tracks about 395 million years ago, but just what that vertebrate was and what it looked like will require further evidence to determine. I am comfortable saying that the tracks were made by a tetrapod in the vernacular sense (i.e. a four-footed vertebrate), but what is truly a creature related to the common ancestor of all land-dwelling vertebrates?

Here is another, hypothetical, example that might help explain some of my reservations about these tracks. Bipedalism has long been treasured as the defining trait of humans (=hominins). Find something "ape-like" between 6 and 4 million years ago that exhibits evidence of bipedalism and you have yourself a hominin, right? But lets say you find what appears to be a track made by a bipedal ape in sediments 10 million years old.

Does this mean that "
Ardi" is suddenly irrelevant? Of course not! It is entirely possible, for example, that another group of apes, as yet unknown, independently evolved bipedalism before going extinct. Then again, such a track could mean that our previous hypotheses were wrong and require revision according to new evidence. Without body fossils, bones to compare to what has already been collected, it is impossible to know which scenario is correct.

We are faced with a similar situation here. The hypothesis that the tracks were made by tetrapods seems pretty reasonable, but it is going to take more evidence to support. I am in no way trying to downplay this study. Instead I think it is wonderful because it brings up so many new questions!

If the scientists behind this new research are correct then tetrapods evolved much earlier than we previously supposed, and what we have taken up till now as the general evolutionary sequence of forms in early tetrapod evolution are actually disparate forms which are part of a more complex radiation of early tetrapods. In this case, as the authors note, creatures like Tiktaalik did not quickly give way to early tetrapods but lived alongside them for 10 million years or more. This does not mean that Tiktaalik, Acanthostega, and the rest are irrelevant to tetrapods origins, but rather that we need to revise our hypotheses about how they relate to one another.

Some people might consider my uncertain admissions here to be something of a downer, but I cannot agree. In science uncertainty is exciting. The authors of this new paper have proposed an interesting hypothesis that could rearrange what we thought we know about the origins of tetrapods and a lot of work, both in the lab and the field, will need to be done to sort this all out. We should not feel compelled to throw all our weight behind one hypothesis or another without more evidence. We have been presented with some really intriguing questions, and I look forward to reading the future reports of how scientists went about trying to find some answers.

For more, see these posts by Ed Yong, Adam Rutherford, and Henry Gee, as well as the supplementary material on the Nature website.

Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M., & Ahlberg, P. (2010). Tetrapod trackways from the early Middle Devonian period of Poland Nature, 463 (7277), 43-48 DOI:
10.1038/nature08623


O outro artigo traz:

Footprints could push back tetrapod origins
Newly discovered trackways much older than previous evidence for sea-to-land transition
By
Sid Perkins
Web edition : Wednesday, January 6th, 2010

Fossilized footprints found in an abandoned quarry in Poland hint that four-limbed creatures called tetrapods evolved much earlier and in a radically different environment than previously thought.

The footprints — many individual impressions, as well as some arranged in sets called trackways — are preserved in 395-million-year-old rocks in the Holy Cross Mountains, in the southeastern part of the country, paleontologist Per E. Ahlberg and colleagues report in the Jan. 7 Nature. That age substantially predates the time frame that paleontologists have pinned as the sea-to-land transition.

Evidence suggests that the carbonate rocks were laid down as sediments in the intertidal areas of a tropical shoreline, possibly in a lagoon, says Ahlberg, of Uppsala University in Sweden.

The presence of footprints in rocks of this age is surprising: The tracks date to 18 million years before body fossils of tetrapods show up in the geological record. And the footprints are about 10 million years older than body fossils of creatures such as Tiktaalik and Panderichthys (SN: 6/17/06, p. 379), believed to represent the transition from lobe-finned fish to creatures fully adapted to life on land.

Ahlberg and his colleagues contend that the findings “force a radical reassessment of the timing, ecology and environmental setting of the fish-tetrapod transition.” While previous studies have suggested that the first tetrapods hauled up on lakeshores or in freshwater deltas, these trackways hint that the water-to-land transition could have happened in a shallow marine setting.

In some areas of the quarry, the fossilized footprints are so common that they fall on top of and partially obliterate one another, forming what Ahlberg and his colleagues call a “densely trampled surface.” Small craters peppering the surface were made by falling raindrops — a sign that the ancient sediments were exposed to the air at least part of the day, the researchers contend.

The arrangement of footprints in one trackway — including stride length and relative spacing, as well as the absence of an impression from a sagging tail — suggest a tetrapod between 40 and 50 centimeters long left the tracks. Individual footprints in this set didn’t have sharply defined edges, possibly because the creature traipsed through squishy sediment in shallow water, the researchers note.

Other footprints at the site, however, were made by a larger, similar creature and include signs of toes. The largest of those prints is about 15 centimeters wide and was probably made by a tetrapod about 2.5 meters long, the team estimates.

Because the rocks don’t contain any body fossils, it’s difficult to interpret what type of organism made the tracks, says Jennifer A. Clack, a paleontologist at the University of Cambridge in England. “If the isolated footprints are what they seem to be, the creature was relatively enormous,” she notes. And, she adds, “if fossils of the creature that made these tracks are ever found, they could well upset the apple cart of what people thought about tetrapod evolution.”

Constantly changing water levels make intertidal areas a dynamic environment, Clack says. In such a setting — where substantial quantities of food might have been stranded in shallow water when tides rolled out — evolution would have favored adaptable creatures, she contends.

The newly described footprints and trackways “are a very exciting find,” says Anthony J. Martin, a paleontologist at Emory University in Atlanta. “The combination of trampled surfaces, multiple trackways with tetrapodal gait patterns [and] distinct individual tracks with distinct digit impressions … makes a very persuasive argument that these structures are tetrapod trace fossils.”

Other scientists, however, aren’t convinced that tetrapods left the fossilized footprints.

“These are interesting trace fossils,” says Ted Daeschler, a paleontologist at the Academy of Natural Sciences in Philadelphia. However, he notes, trace fossils are notoriously difficult to interpret with confidence. Also, he adds, the arrangement of individual footprints in these trackways reflects a style of walking not seen again in the fossil record until 50 million years later. (No trackways that can be attributed to Tiktaalik or Panderichthys have been discovered.) “All together, the new evidence isn’t strong enough to make me discard the current, well-supported ideas about the timing of tetrapod evolution,” he says.

Many of the newly described footprints are indistinct and possibly not even made by tetrapods, but finding anything from that far back in time is still exciting, comments Robert L. Carroll, a paleontologist at the McGill University’s Redpath Museum in Montreal. The indistinct tracks could be impressions made in soft sediments by lobe-finned fish, he notes. And the footprints may have been made by members of a yet-to-be-discovered group of four-limbed creatures that went extinct and didn’t lead to today’s tetrapods.

Resumindo, ainda não ha evidências sólidas a fim de que se atribuam tais pegadas a tetrápodes, uma vez que ainda há a carência de fósseis de esqueletos. Porém, mesmo que se encontre o fóssil do dono da pegada, a parte referente à história dos tetrápodes não está descartada, mas apenas será modificada, acrescentando-se este novo personagem.

Recomenda-se ainda a leitura desta postagem (aqui), a qual põe em dúvida se a pata é realmente de um tetrápode.

Agora... vejamos a nota seguem comentários em verde:


Nota: Cada vez mais a evolução de seres complexos como os tetrápodes vai sendo colocada mais para trás.

Começa com o alarde da existência do fantasma de que tudo está sendo derrubado e caindo por terra, o que é uma grande mentira, conforme demonstram os artigos acima.

Se continuar assim, não haverá tempo suficiente para essa dita evolução ter se processado (mais ou menos como ocorreu com as águas-vivas -melhor consultar este aqui).

.Errado!!! Ajustes em escalas evolutivas vão continuar acontecendo sempre que se descobrirem novos fósseis (Oxalá isso aconteça).

A fim de se viajar ao passado, as coisas ficam cada vez mais difíceis. Fosseis de espongiários aparecem primeiro nos registros fósseis. Todavia, geneticamente, parece que a medusa pente (comb jelly) apresenta uma divergência evolutiva anterior ás esponjas.

Vejamos o que o Sr. Casey Dunn, um dos pesquisadores, disse sobre isso:

While cautioning that additional studies should be conducted to corroborate his team's findings, Dunn says that the comb jelly could only have achieved its apparent seniority over the simpler sponge via one of two new evolutionary scenarios:

1 - The comb jelly evolved its complexity independently of other animals, after it branched off onto its own evolutionary path;

2 - The sponge evolved its simple form from more complex creatures -- a possibility that underscores the fact that "evolution is not necessarily just a march towards increased complexity," says Dunn. "This scenario would provide a particularly dramatic example of that principle."

Na seqüência, mais sobre o que os pesquisadores disseram:

How long ago did the earliest comb jelly diverge? "Unfortunately, we don't have fossils of the oldest comb jelly," laments Dunn. "Therefore, there is no way to date the earliest jelly and determine when it diverged."

After diverging from other species, the comb jelly probably continued to evolve, says Herendeen. Therefore, today's comb jelly--a common creature--probably looks very different that did the earliest comb jelly.

Moreover, the tentacled, squishy but bell-less comb jelly developed along a different evolutionary path than did the classically bell-shaped jellyfish, says Patrick Herendeen, an NSF program director. Such divergences mean that "the jellyfish type of body form has independently evolved several times," says Herendeen.

Ou seja, até aqui, nada no trabalho dos pesquisadores apóia teorias esdrúxulas como DI ou criacionismo em detrimento da teoria evolutiva.

Como se pode notar, é patente a distorção de fatos e o estrago que criacionistas, por meio de sua má fé, causam ao entendimento das disciplinas científicas. Simplesmente, prestam um desserviço ao conhecimento a fim de sustentar seus mitos de criação e preservar a sua fé de modo imaculado.

É triste que em pleno século XXI ainda haja um pensamento tão primitivo assombrando a ciência e ameaçando invadir as escolas, de forma sorrateira, travestido de ciência.

É triste pensar que uma crença necessita da mentira para se sustentar, tal como criacionistas, disfarçados sob a alcunha de “proponentes do DI”, mentiram no julgamento de Dover. Isso é fazer má religião e má ciência. É transformar a tradição hebraica a qual cristãos em parte herdaram em uma palhaçada. É desserviço científico e à religião. É expor a religião ao ridículo. É uma questão de se adorar uma divindade da mentira.


Pior ainda, em 2006, o peixe Tiktaalik foi anunciado como sendo o elo definitivo entre peixes e anfíbios (confira aqui e aqui).


Bem, o primeiro artigo foi escrito pelo senhor Enézio, nosso herói tupiniquim e braço do Discovery Institute na "Terra das Bananas e dos Papagaios", conhecido pela sua desonestidade intelectual há tempos e pela sua má retórica à Macaco Simão.

Quanto ao segundo artigo, é oriundo da SCB, conhecida pelo seu desserviço à ciência e à religião, bem como por seus associados serem os maiores propagadores da ignorância no Brasil, cujo material de cunho didático é o lixo fundamentalista religioso importado dos EUA.

Assim, sem comentários...

A fértil imaginação darwinista se apropriou do fóssil e elaborou ilustrações do peixe saindo da água para a terra (como também fizeram com o celacanto e o panderichtys). O que ocorre é que essas pegadas recém-anunciadas são pelo menos (na contagem darwinista) 18 milhões de anos mais antigas que o Tiktaalik, o que significa que animais tetrápodos já andavam pela Terra muito tempo antes da existência de seus alegados elos transitórios. E agora, José?[MB]

É engraçado, paras não dizer desonesto... Quando é para alardear uma crise em determinado ponto da árvore evolutiva, a datação das rochas é válida; quando se trata de derrubar as maluquices criacionistas nada disso é válido. Idem para os fósseis.

Para mim, tanto a datação de rochas, como fósseis são evidências válidas para que se possam atestar a escala temporal de vida na terra, bem como da teoria evolutiva.

Ainda é inseguro e prematuro afirmar com tanta veemência que tal pegada pertenceu a um tetrápode de fato. Ainda há muito que ser estudado, interpretado e compreendido, segundo consta nos artigos acima expostos. Sem o suposto dono dela, somente podemos especular.

Fazer afirmações enfiando palavras na boca de cientistas é no mínimo má fé, sem falar que isso constitui um alarde insensato, que nem o próprio descobridor da pegada se arrisca a fazer, por ser um profissional de aparente credibilidade.

Ao que me parece, fundamentalistas sofrem de uma patologia terrível que é tentar tornar sua crença a verdade suprema. Até pensei em dar um nome para ela: “fundamentalose religiosa”. Aqui, um pouco da desonestidade criacionista.

Todavia, mais fértil é uma mentalidade que quer a todo custo tornar uma alegoria elaborada por povos da antiga região do crescente fértil, combinada com os cálculos do
arcebispo Usher uma verdade acima da ciência e das outras religiões.

É imaturo e estúpido conceber que um ser do além veio e fez tudo, resolveu acabar com tudo e refazer “n” vezes.

Sem contar que fundamentalistas fazem de tudo para um livro que classifica morcegos como aves, que diz que o sol parou, que manda fazer práticas sem sentido para afastar lepra e que diz que um sujeito foi engolido por uma baleia sobreviveu (esta somente poderia ser um odontoceto que o despedaçaria, jamais um misticeto, o qual não o engoliria), mereça crédito em termos científicos.

Livros sagrados servem como fonte para entendermos alegorias que trazem lições de vida e, nos mostram como eram as pessoas de épocas remotas.

A ciência é algo em constante desenvolvimento. Esta é a razão do conhecimento de hoje ou ser completado ou cair por terra quando de uma nova descoberta. Grande exemplo é o universo de Einstein, estático e perfeito. Huble descobriu que as coisas não eram tão simples assim.

Conclusão: Einstein foi derrubado neste aspecto, mas nem por isso seus trabalhos foram desprezados, porém corrigidos em alguma parte.

Espero que encontrem o dono deste lindo pezinho bem rápido nessas rochas, de modo aos cientistas não terem tanto trabalho. Ou descubram do que se trata isso, se não for, de fato, o pezinho antigo de um parente nosso.

Porém isso em nada derrubará a teoria evolutiva, somente a ajustará neste ponto e nos trará mais esclarecimentos a fim de reconstruirmos a árvore da vida e entendermos de onde viemos.